# Ethanol: A Conceptual RoadMap

#### Prof. Gonçalo Pereira UNICAMP





# Energy































**Climate change** 

### **CO2 is a Global Problem**





# CO2 is <u>NOT a LOCAL</u> Problem

O = C = O







#### **A Gaseous Fertilizer**



### **Fallacious Reasoning**





### How does a Battery work?





# How to recharge a Battery?







### **Metal Battery Cars**

#### **Plenty of Global-Emission**



**No Local-Emission** 









#### **Battery Liquefaction**



#### 2540 KJ/Mol





2470 KJ/Mol





# **Battery Liquefaction**





# **High Energy Density**





# How to Discharge a Battery







# **Combustion: The Traditional Way**









# **Internal Molecular Combustion**







# **Clean Combustion**





# **Energy Efficiency**



25%



90%





# **Combining Advantages: The Fuel Cell Revolution**









# Solid Oxide Fuel Cell System





# **SOFC Design**





### **Nissan Disruption**

| NissanNews.com   USA       |      |           |           |            | <b>Email Alerts</b>   Media Contacts   InfinitiNews.com |                 |   | vs.com |   | .ets 🔻 | •  |   |  |
|----------------------------|------|-----------|-----------|------------|---------------------------------------------------------|-----------------|---|--------|---|--------|----|---|--|
| Innovation<br>that excites |      | Newsroom  |           |            |                                                         | Search Newsroom |   |        |   |        |    | Q |  |
| MODELS                     | NEWS | GALLERIES | CORPORATE | PRESS KITS | BASKET                                                  | T O ITEMS       | f | *      | 1 | C      | in | ٣ |  |

Home > Photos



#### Nissan unveils world's first Solid-Oxide Fuel Cell vehicle

YOKOHAMA, Japan (August 4, 2016) – In Brazil today, Nissan Motor Co., Ltd. today revealed the world's first Solid Oxide Fuel-Cell (SOFC)-powered prototype vehicle that runs on bio-ethanol electric power. The breakthrough model is an all-new light-commercial vehicle that can rely on multiple fuels – including ethanol and natural gas – to produce high-efficiency electricity as a power source.

- 📥 🕇 1920 x 1080
- **▲ +** 1200 x 1200
- SHARE 🕑 COPY EMBED HTML 🖾



#### Nissan shows in Japan technology initially developed for Brazil

# Nissan mostra no Japão tecnologia de etanol de 2ª geração criada no Brasil

Carmaker presented at the japan auto show, a project that allows the use of cane fuel to generate hydrogen for fuel cells

**Cleide Silva\*, O Estado de S.Paulo** 23 de outubro de 2019 | 14h34



Agora em sua segunda fase de testes em conjunto com a **Universidade de Campinas** (Unicamp) e o Instituto de Pesquisas Energéticas e Nucleares (Ipen), ligado à USP, o projeto começa a se mostrar viável comercialmente e, segundo Silva, poderá ser adotado de forma global. "Esse já não é um projeto só do Brasil."

#### This is not a project just for Brazil







### **BioEletric Bus**





### Is this Possible?





### **New Biomasses**





Energy-cane I

Sugarcane

Energy-cane II



## **Resistance, Productivity and Biofertilizers**





### **Root System**











![](_page_33_Picture_1.jpeg)

![](_page_34_Picture_0.jpeg)

# **Agave for Arid Areas**

![](_page_34_Picture_2.jpeg)

![](_page_34_Picture_3.jpeg)

![](_page_34_Picture_4.jpeg)

![](_page_35_Picture_0.jpeg)

# Soluble or Insoluble: Everything is Sugar

![](_page_35_Picture_2.jpeg)

![](_page_35_Picture_3.jpeg)

![](_page_36_Picture_0.jpeg)

OH--

OH--

OH----

OH .....

#### **Second Generation**

#### Sugar Cane – Typical Composition

80

1 Ton Sugar Cane >> 140 kg Sugar >> 140 kg Bagasse (FIBER) >> 140 kg Straw and Tip (FIBER)

![](_page_36_Picture_4.jpeg)

![](_page_36_Picture_5.jpeg)

![](_page_36_Picture_6.jpeg)

1 ha Energy Cane 240

![](_page_36_Picture_8.jpeg)

<u>он</u>----о

0H-----0

0\_0

OH .....O

![](_page_36_Picture_9.jpeg)

![](_page_37_Picture_0.jpeg)

## **2G Technology**

#### **Pre-Treatment**

#### Hydrolysis

#### Fermentation

![](_page_37_Figure_5.jpeg)

![](_page_38_Picture_0.jpeg)

### **Bagasse is not Wood**

![](_page_38_Figure_2.jpeg)

![](_page_38_Picture_3.jpeg)

![](_page_38_Picture_4.jpeg)

# **Abrasion and Erosion**

![](_page_39_Picture_1.jpeg)

![](_page_39_Picture_2.jpeg)

![](_page_40_Picture_0.jpeg)

Wood

# **Bagasse becomes a Porridge**

![](_page_40_Picture_3.jpeg)

![](_page_40_Picture_4.jpeg)

![](_page_40_Picture_5.jpeg)

![](_page_40_Picture_6.jpeg)

![](_page_41_Picture_0.jpeg)

# Adhesion

![](_page_41_Picture_2.jpeg)

![](_page_42_Picture_0.jpeg)

![](_page_42_Picture_1.jpeg)

![](_page_42_Picture_2.jpeg)

Imprensa Investidores Governança Corporativa Trabalhe com a gente Blog Q @ 🔞 👳 EN

A GRANBIO MATÉRIA PRIMA INOVAÇÃO INDÚSTRIA BLOG

![](_page_42_Picture_5.jpeg)

![](_page_43_Picture_0.jpeg)

#### Raizen

![](_page_43_Picture_2.jpeg)

![](_page_43_Picture_3.jpeg)

![](_page_44_Picture_0.jpeg)

# "Sugar is the New Crude"

![](_page_44_Picture_2.jpeg)

![](_page_44_Figure_3.jpeg)

![](_page_44_Picture_4.jpeg)

![](_page_45_Picture_0.jpeg)

Area Requirement Analysis

# **Soft Energy Transition**

#### Ethanol productivicty (liters/ha)

![](_page_45_Figure_3.jpeg)

#### 75 MM ha = Global Gasoline Consumption Equivalent

![](_page_46_Picture_0.jpeg)

## **Brazilian Landscape**

#### Million Hectares

![](_page_46_Figure_3.jpeg)

![](_page_47_Picture_0.jpeg)

### **Africa**

![](_page_47_Picture_2.jpeg)

#### THE MODELLING

24.2 mil km<sup>2</sup>

TOTAL LAND AREA

2.4 mil km<sup>2</sup>

AREA CURRENTLY

CULTIVATED

1 mil km<sup>2</sup>

**GRAZING LAND** 

6.1 mil km<sup>2</sup>

2.9 mil km<sup>2</sup>

DOGTECTED AND MC

AREA REQUIRED AS

INSIGHTS FROM The first step in the assessment was to delineate and quantify the treate of the delineate and quantify the tracts of land potentially available for sustainable biofuel feedstock production.

#### Current availability of land potentially available for biofuel feedstock production and suitability for production of energy crops

Sub-Saharan Africa's total land area amounts to 24.2 million km\*, from which we deducted various tracts of land in order to comply with the RSB principles.

RSB Principle 6: Local food security is stringently applied by reserving all cropland for food security and excluding it from biofuel feedstock production. Currently about 2.4 million km\* or 10% of the total land area in sub-Saharan Africa is cultivated for crop production. In addition to cropland, about 1 million km<sup>+</sup> of grassland and shrubland is currently required as grazing land for livestock, and is also excluded.

RSB Principle 7: Conservation lists forests (according to the FAO definition) as 'no-conversion' areas. We therefore excluded all sub-Saharan forests from potential biofuel feedstock production areas, amounting to about 6.1 million km<sup>2</sup>. The full exclusion of forests is also justifiable under RSB Principle 3: Greenhouse gas emissions. If forests are converted to cropland, the GHG debt resulting from these actions will mean that any biofuels produced from feedstock grown on this land will not comply with the minimum GHG emission reduction requirement. We also excluded protected areas and high biodiversity value areas other than forests, which added up to another 2.9 million km<sup>2</sup>.

AREA UNDER FORESTS All these areas are designated as 'no-go areas' for energy crop production, and have been excluded from the biofuel feedstock assessment. In addition, we excluded sparsely vegetated and hare land because these areas are not considered viable for commercial rain-fed farming. This left a balance of 5.5 million km2 of land - almost evenly split between grassland and shrubland - potentially available for biofuel feedstock production. We termed these areas 'REMAIN land' (Table 3, Figure 6).

| DIGDTFLADIT FACEAG      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11-11-11-11-11-11-11-11-11-11-11-11-11- |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
|                         | percent of the second | And the second second                   |
|                         | Total land extent (2010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24.3                                    |
|                         | Exclusion layer FOOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2.4                                    |
| 5.5 mil km <sup>2</sup> | Exclusion layer GRAZING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -8.0                                    |
|                         | Exclusion layer FOREST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -6.9                                    |
| MAIN LAND POTENTIALLY   | Esclusion layer ENVIRONMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.0                                     |
| AVAILABLE FOR BIOFUEL   | Exclusion SPARSELY VEGETATED and BARE LAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -6.1                                    |
| PRODUCTION              | Built-up areas and water bodies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -8.5                                    |
|                         | HEMANING LAND CONSIDERED FOR BIOFUEL FEEDSTOCK<br>PRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.5                                     |

Figure 6: Share of REMAIN land relative to total land in sub-Saharan Africa, in 2000

![](_page_47_Picture_12.jpeg)

Understanding the sustainable relation biofost potential in sub-Saharan Africa | Page 23

![](_page_48_Picture_0.jpeg)

![](_page_48_Picture_1.jpeg)

550 MM Ha

#### BIODIVERSITY AREAS 1

#### Table 3: Availability of current REMAIN land

**5.5 mil km**<sup>2</sup> Remain land potentially Available for biofuel Production

|                                                               | million km <sup>2</sup> |
|---------------------------------------------------------------|-------------------------|
| Total land extent (2010)                                      | 24.3                    |
| Exclusion layer FOOD                                          | -2.4                    |
| Exclusion layer GRAZING                                       | -1.0                    |
| Exclusion layer FOREST                                        | -6.9                    |
| Exclusion layer ENVIRONMENT                                   | -2.9                    |
| Exclusion SPARSELY VEGETATED and BARE LAND                    | -5.1                    |
| Built-up areas and water bodies                               | -0.5                    |
| REMAINING LAND CONSIDERED FOR BIOFUEL FEEDSTOCK<br>PRODUCTION | 5.5                     |

Source: Own calculations

![](_page_49_Picture_0.jpeg)

## Life Cycle Analysis

![](_page_49_Figure_2.jpeg)

![](_page_50_Picture_0.jpeg)

# Biomass Biomass Mobility by Production Transformation Biofuels

![](_page_50_Picture_2.jpeg)

![](_page_50_Picture_3.jpeg)

![](_page_51_Picture_0.jpeg)

# portal D bioenergia

![](_page_51_Picture_2.jpeg)

![](_page_51_Picture_3.jpeg)

![](_page_51_Picture_4.jpeg)

#### **International PhD Program**

![](_page_52_Picture_0.jpeg)

# bofuture

![](_page_52_Picture_2.jpeg)

![](_page_53_Picture_0.jpeg)

![](_page_53_Picture_1.jpeg)

**REALIZATION:** 

![](_page_53_Picture_3.jpeg)

**ApexBrasil** 

![](_page_53_Picture_4.jpeg)

MINISTRY OF FOREIGN AFFAIRS

TECHNICAL SUPPORT

![](_page_53_Picture_7.jpeg)