Paulo Afonso de André

PhD

- Health & Environment (WHO, TWB, IHME GBD)
- Tailpipe emissions
- Evidences and real world evaluation
- Conclusions

Health-related air pollutants, according World Health Organization (WHO)

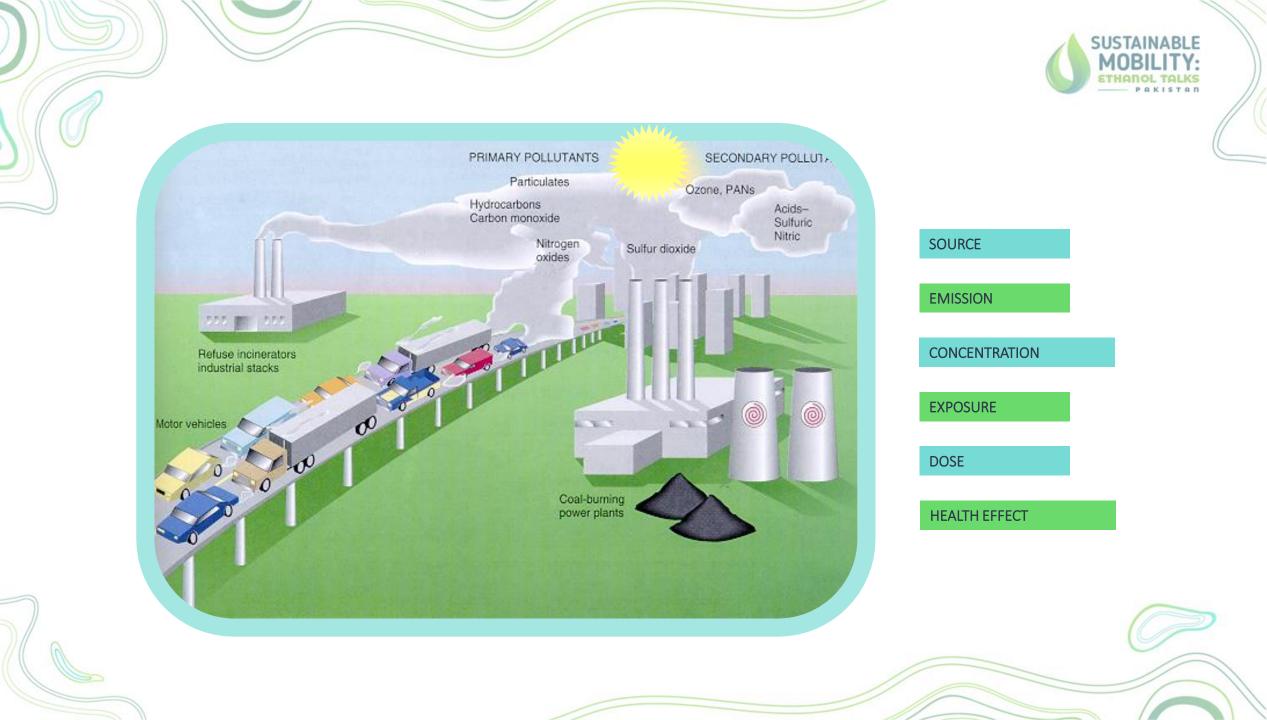
<u>PM₁₀ – respirable particulate matter</u>

- complex mixture of solid and liquid particle suspended in the air, with different physical and chemical characteristics
- Particles less than 10 μm
- Annual mean limit = 20 μ g/m³

PM_{2.5} – fine particulate matter

- Particles less than 2.5 µm
- Annual mean limit = $10 \,\mu g/m^3$

<u>UF – Ultra fine particles</u>

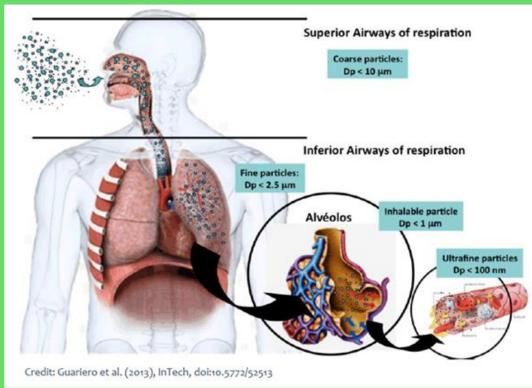

• Particles less than 100 nm

Health-related air pollutants, according World Health Organization (WHO)

O₃ – Ozone: a secondary pollutant

- photochemically produced
- Precursors: NO₂, NMVOC, methane
- Strongly dependent on meteorological availability of data + dispersion + photochemical modelling
- Daily 8h mean limit = $100 \mu g/m^3$

Particulate Matter (PM) by size



Not all particles are created equal. Toxicity varies with:

- Particle number, size, surface area
- Chemical composition
- Pollution mixture (O₃, metals, organics, endotoxins)
- Mechanism of action (oxidative stress, inflammation, lung function)

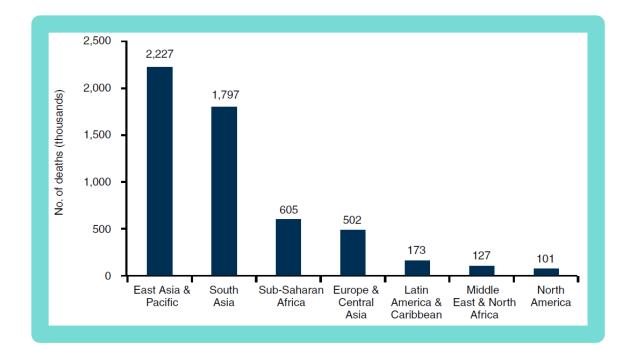
Particulate Matter (PM) in human body

Leading Modifiable Risks by Number of Deaths: **Globally, 1990 and 2013**

Estimated deaths – 2016 Ambient PM_{2.5}

- 7 millions (11,6%) premature deaths (600,000 children)
- **3 x (AIDS+Tuberculosis+Malaria)** (WHO, 2018)

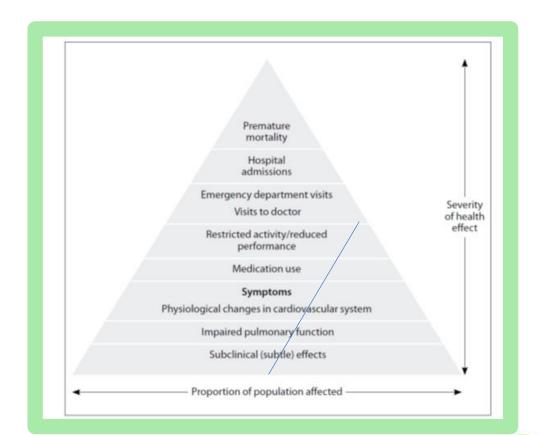
1990 Rank	2013 Rank
1 Dietary risks	1 Dietary risks
2 High systolic blood pressure	2 High systolic blood pressure
3 Tobacco smoke	3 Tobacco smoke
4 Air pollution	4 Air pollution
5 Child and maternal malnutrition	5 High body mass index
6 Unsafe water, sanitation, and handwashing	6 High fasting plasma glucose
7 High body mass index	7 Alcohol and drug use
8 High fasting plasma glucose	8 High total cholesterol
9 High total cholesterol	9 Low physical activity
10 Alcohol and drug use	10 Low glomerular filtration rate
11 Low physical activity	11 Child and maternal malnutrition
12 Low glomerular filtration rate	12 Unsafe sex
13 Other environmental risks	13 Unsafe water, sanitation, and handwashing
14 Unsafe sex	14 Other environmental risks
15 Occupational risks	15 Occupational risks
16 Low bone mineral density	16 Low bone mineral density
17 Sexual abuse and violence	17 Sexual abuse and violence
Behavioral risks Env	ironmental/occupational risks Metabolic risks


Source: IHME – GBD 2013 (World Bank, 2016)

Total Deaths from Ambient PM_{2.5} Pollution by Region

Main factors – upward trend

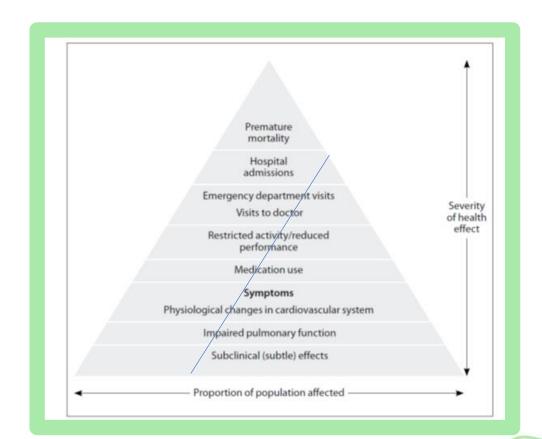
- PM2.5 increases in large populations
- Population growth
- Population aging
- Changes in the prevalence of diseases afected by air pollution (TWB, 2016)



Sources: World Bank and IHME, using data from IHME, GBD 2013 (World Bank, 2016)

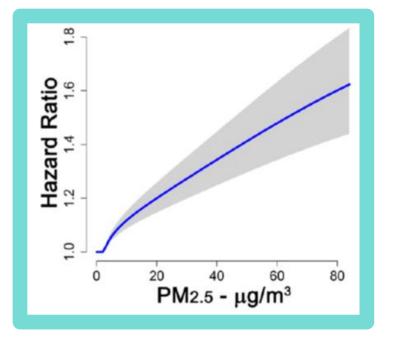
Health Effect severity x Proportion of population affected

- Most severe effect => less frequent
- Less severe effect => more frequent
- The severity of each health effect depends on the dose of pollutant exposure, and it's associated hazard ratio



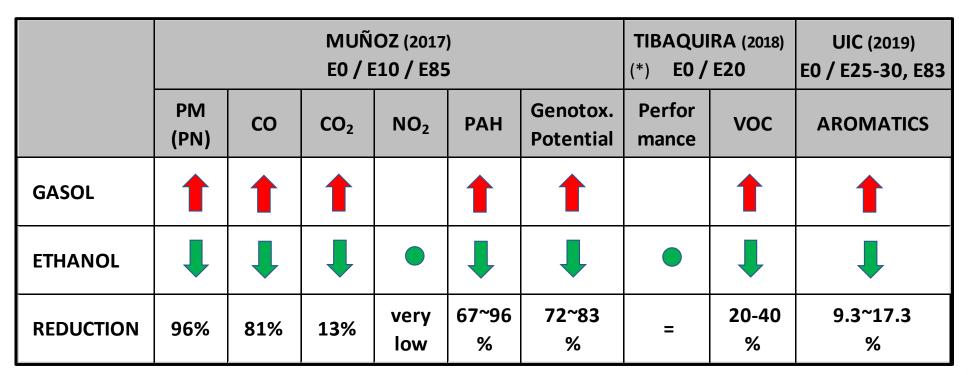
Source: American Thoracic Society (in WHO, 2006)

Health Effect severity x Proportion of population affected


- Most severe effect => less frequent
- Less severe effect => more frequent
- The severity of each health effect depends on the dose of pollutant exposure, and it's associated hazard ratio

Source: American Thoracic Society (in WHO, 2006)

Hazard ratio – nonaccidental premature death for PM_{2.5}


WHO Air Pollution Guidelines targets (global update 2005):

- Annual mean: 10 µg/m³
- **24-h mean: 25** μg/m³
- A 10 µg/m³ reduction in PM_{2.5} reduces total mortality risk by 6%

Source: Burnett et al, 2018

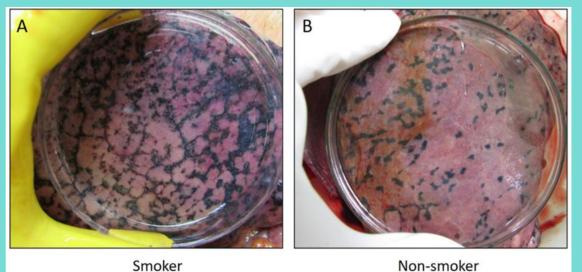
Tailpipe emissions

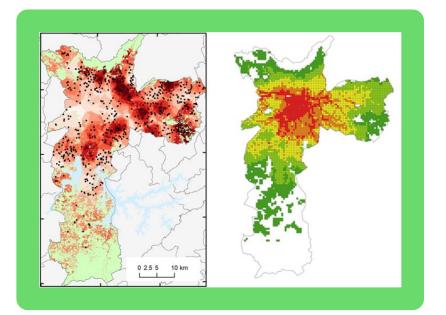
(*) Carburated vehicles PAH = Polycyclic Aromatic Hidrocarbon

Tailpipe emissions

	ETHANOL	GASOLINE		
ACETALDEHYDE	行	Ţ		
FORMALDEHYDE	Ţ	Û		
TOXICITY RATIO (ACET : FORM)	1:6			
FINAL TOXICITY		1		

Toxicological studies with animal exposition


HARDWARE	ENDPOINT	ETHANOL	GASOLINE
EXPOSITION CHAMBER	ACCUTE	-	1
	CHRONIC	Ļ	1

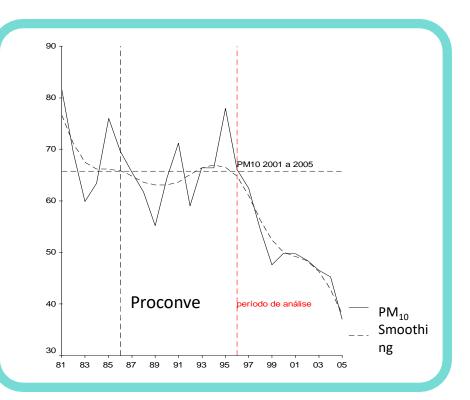


Autopsy-based studies (Antracosys)

Non-smoker

Lung

UF - ultrafine particle and Ozone formation


POLUTANTS	ETHANOL	REDUCTION	GASOLINE	
PM (PN) SALVO, 2017	Ļ	33%	1	
OZONE FORMATION TIBAQUIRA, 2018		17%	1	

Metropolitan Area of São Paulo (MASP) – yearly concentration of PM₁₀

PROALCOOL = started in 1975 PROCONVE = Started on 1986 PM_{2.5} variation from 1996~2005 = 18 μg/m³

- Annual deaths ~ 80,278 (2005)
- Mortality risk @ 18 μg/m³ ~ 10.8%
- Avoided annual deaths (2005) ~ 8.640
- Costs (DALY) ~ US \$1.5 billion

		PROCONVE (2005)	SALDIVA (2010)		UIC (2019)		VORMITTAG (2018)		РІ NICHKA (2017)
		MASP	10% D => E	100% G => E	100% E0 => E25/30	100% E0 => E83	MASP D => 18% biof	MARJ D => 18% biof	20% PM _{2.5} reduction
NUMBER OF CASES	MORTALITY	8,640	112/y	130/y	2,403	4,469	7,319	5,712	160 ~ 5,982
	MORBIDITY	-	675/y	8,002/y	-	-	22,003	6,167	-
US \$	MORTALITY	1.5 b	20.1 m/y	23.3 m/y	22 b	40 b	612 m	311.7 m	-
	MORBIDITY	-	1.9 m/y	19.8 m/y	-	-	22.9 m	5 m	-
	TOTAL	1.5 b	22 m/y	42.1 m/y	22 b	40 b	634.9 m	316.7 m	-0

m=million; b=billion

ETHANOL AND AIR POLLUTANTS CONCLUSIONS

- Accute and chronic toxicity of ethanol is lower than gasoline
- Tailpipe emissions from ethanol blended fuels are lower than gasoline
- \circ UF particles have more significant toxicity than the attributable to PM_{2.5}
- Ethanol blended fuels emit a much lower UF particles than gasoline
- In MASP despite the fleet increase and extensive use of ethanol and advanced engine technologies, the concentration of aldehydes did not show any growth

ETHANOL AND AIR POLLUTANTS CONCLUSIONS

- Photochemical modeling for MASP concluded that ethanol use does not explain ozone behavior
- Among several scenarios the use of biofuels replacing fossil fuels always relay on positive and significative impact on public health and economic
- The more time we take to act, the more people will die

REALIZATION:

PROMOTION:

MINISTRY OF FOREIGN AFFAIRS

TECHNICAL SUPPORT

