

Dr. Plinio Nastari

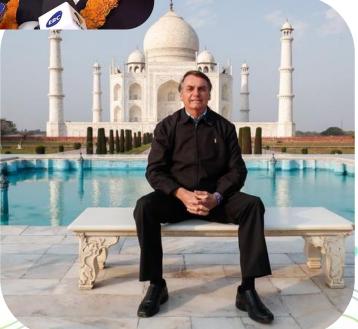
President, DATAGRO &

Civil Society Representative at Brazil's

CNPE National Council on Energy Policy

INDIA REPUBLIC DAY 2020

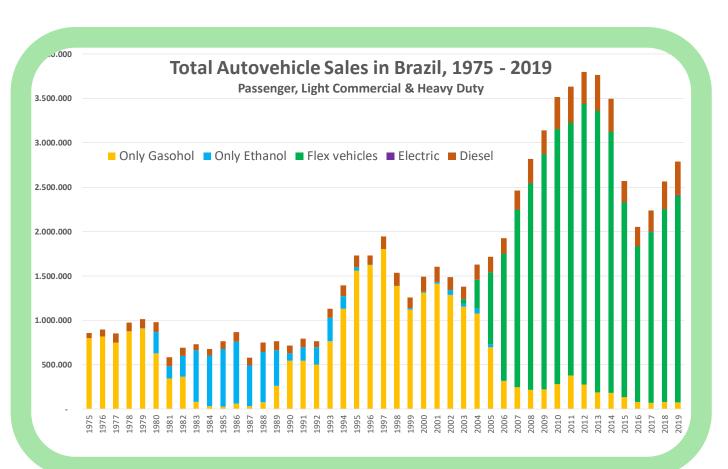
Pres. Bolsonaro as Chief Guest - Cooperation Agreements signed



Jan 26th, 2020

REASONS WHY ETHANOL POLICY WAS IMPLEMENTED IN BRAZIL

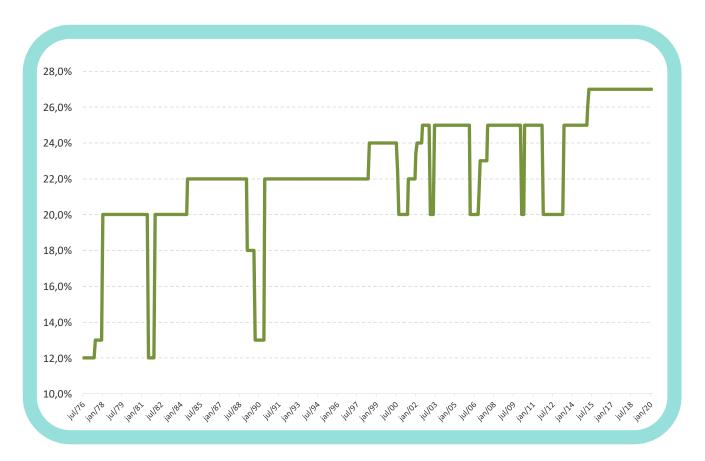
- After 1970's oil crises, to mitigate high dependence on oil imports (+81% of total demand in 1975)
- Negative impact on trade balance & the economy
- Take advantage of Brazil's tradition in sugar cane cultivation
- Environmental & health benefits were found only much later



BRIEF CHRONOLOGY OF ETHANOL USE IN BRAZIL

- Ethanol blends have been in use in Brazil since 1924
 - 5% mandatory blend first approved in July 1931
 - Blend level rose to as much as 50% during II WW
- 1975: decision was taken to gradually raise <u>mandatory blend</u> in all gasoline sold & to develop technology for the use of pure (E100) ethanol use in cars
- 1976 onwards: gradual raising of mandatory blend
- 1979 (Aug): pure (E100) ethanol car launched (Fiat 147), for use of hydrous ethanol fuel (avg 95.5°. GL at 15°. C).
- 1984-87: pure (E100) ethanol cars are great success (92% to 96% of total sales)
- 1989: Ethanol supply crisis affects sales of pure ethanol cars
- 2003 (March): launching of flex-fuel cars
- 2004-2019: flex-fuel cars are great success (96.4% of total sales in 2019)
- 2017: RenovaBio legislation is approved in Congress with massive majority vote
- 2019 (Dec): flex-fuel cars account for +80% of the fleet
- 2020: RenovaBio is implemented

AUTOVEHICLE SALES IN BRAZIL ACCORDING TO FUEL USE



- 1984-87: neat etanol car sales were 92% to 96% of all car sales.
- 2019: Flex-cars are 96.4% of all car sales.
- In Dec/19, flex-fuel cars accounted for +80% of total light vehicle fleet.
- Since 2015, mandatory blend of 27% in all gasoline sold in the country.

Source: ANFAVEA, Brazil's Automanufacturers Association, prepared by DATAGRO.

EVOLUTION OF ETHANOL BLEND MANDATE IN BRAZIL 1976-2020

- Mandatory blend of anhydrous etanol, min 99.5°. GL at 15°. C, as % in volume.
- Since Jan/1978, 20%
- Since Jul/1984, 22%
- Since Jun/1998, 24%
- Since Jul/2002, 25%
- Since Mar/2015, 27%
- Applies to all gasoline sold in the country

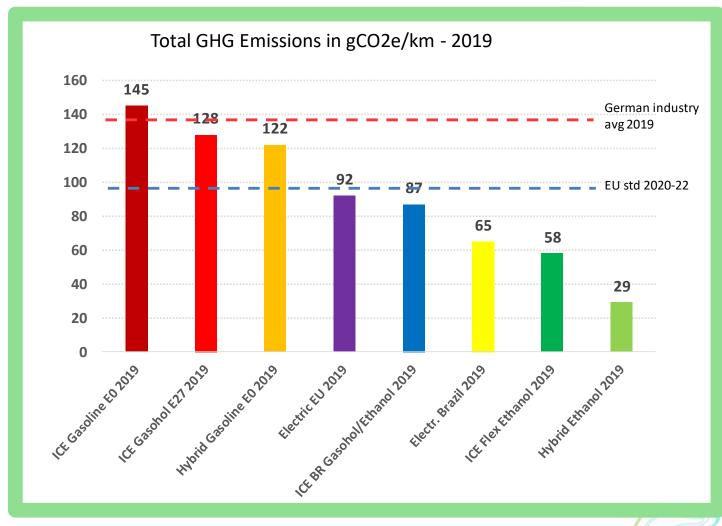
Source: DATAGRO, based on regulations published in Brazil's Official Gazette.

BENEFITS GENERATED FROM ETHANOL POLICY

- Over 3.15 billion barrels of gasoline substituted between 1975-2019 (Brazil's total proven petroleum reserves are 15.4 billion barrels in Dec/19)
- Economy from gasoline imports: US\$ 540.6 billion, including service on foregone foreign debt (Brazil's international reserves are US\$ 368.4 billion on Feb 13, 2020).
 - 2019: 449,514 b/d of gasoline saved, with savings of US\$ 13.03 billion in imports
- 870,000 direct jobs + 2 million indirect jobs
- Sustainability + longevity for the use of petroleum derivates
- Strenghtening & support to local auto industry
- Ethanol is equivalent to Hydrogen distribution infrastructure ("hydrogen-on-the-bucket")
- Per capita GDP rise of US\$ 1098 in cities where ethanol is produced
- Biofuels are central for Brazil's low carbon emission strategy

COMPARISON OF GDP & CO2 EMISSIONS

10 Largest World Economies


2018											
Position	Country	GDP - Million USD	Total CO2 emissions	CO2 emissions	CO2 emissions per USD (tons						
		עכט	(Mt of CO2)	per capita	CO2/M USD)						
1º	United States	20.544.343,46	4.896,00	14,90	238,31						
2º	China	13.608.151,86	9.302,00	6,70	683,56						
3º	Japan	4.971.323,08	1.098,00	8,70	220,87						
4º	Germany	3.947.620,16	683,00	8,20	173,02						
5º	United Kingdom	2.855.296,73	353,00	5,30	123,63						
6º	France	2.777.535,24	293,00	4,40	105,49						
7º	India	2.718.732,23	2.162,00	1,60	795,22						
8ō	Italy	2.083.864,26	314,00	5,20	150,68						
9º	Brazil	1.868.626,09	428,00	2,00	229,05						
10º	Canada	1.713.341,70	573,00	15,50	334,43						
		Source: World	Source: IEA - Ir	Source: Elaborated							

Source: World Source: IEA - International Source: Bank - 2018 Energy Agency 2017- 2018 by

by DATAGRO

CARBON EMISSIONS FROM ETHANOL USE ARE THE LOWEST AMONGST ALL POWERTRAINS

AQI (as MP_{2.5}) FOR MOST POLLUTED CITIES

Most Polluted Cities in the World - Unit: μg/m³ - 2018										
Rankig	City	Country	2018 AVG	Rankig	City	Country	2018 AVG			
1	Gurugram	*	135,8	26	Mandi Gobindgarh		78,6			
2	Ghaziabad	*	135,2	27	Xingtai Shi	*[:	76,7			
3	Faisalabad	*	130,4	28	Shijiazhuang	*}	76,7			
4	Faridabad		129,1	29	Ahmedabad	**	76,1			
5	Bhiwadi	*	125,4	30	Aksu	*1	74,1			
6	Noida	*	123,6	31	Handan	*}	74			
7	Patna	*)	119,7	32	Anyang	*3	72,9			
8	Hotan	*3	116	33	Baoding	*[:	70,7			
9	Lucknow	*	115,7	34	Linfen	*[:	68,2			
10	Lahore	C	114,9	35	Wujiaqu	*[:	67,8			
11	Delhi	*	113,5	36	Xianyang	*3	67,8			
12	Jodhpur		113,4	37	Jaipur	66	67,6			
13	Muzaffarpur	*	110,3	38	Jiaozuo	*3	66,9			
14	Varanasi	•	105,3	39	Hengshui Shi	* [65,7			
15	Moradabad	•	104,9	40	Xuzhou	*3	65,5			
16	Agra	*	104,8	41	Cangzhou Shi	*[:	65,2			
17	Dhaka		97,1	42	Pingdingshan	*3	65,1			
18	Gaya		96,6	43	Kaifeng		64,6			
19	Kashgar	*3	95,7	44	Asansol	*	64,4			
20	Jind	*	91,6	45	Howrah	*)	64,2			
21	Kanpur	*	88,2	46	Xuchang	*[:	64,2			
22	Singrauli	*	86,8	47	Zhengzhou	*3	64,1			
23	Kolkata	*	85,4	48	Tangshan	*3	63,5			
24	Pali	*	82,3	49	Puyang	*1	63,5			
25	Rohtak	*	81,6	50	Luohe	*3	62,6			

Of the 50 most polluted cities in the world:

- 25 in India
- 22 in China
- 2 in Pakistan
- 1 in Bangladesh

São Paulo is 879^{o} in the ranking

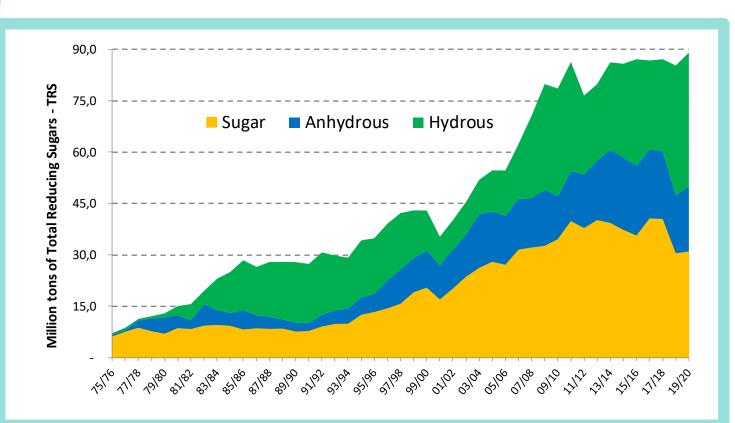
AVG in 2018 - $16.2 \, \mu g / m^3$

MAIN ELEMENTS OF BRAZIL'S ETHANOL POLICY

- Long-term approach: main policy goals & instruments must be maintained overtime
- Blend mandate, not simple authorization
- **Support to innovation** in automobile technology adapted for ethanol use, through fiscal incentives to automaker's improvements in efficiency
- Legal framework to support private investment in expansion of distillation capacity
- Price parity between ethanol & sugar
- Legislation regulating **disposal of vinasse** valuable resource for fertirrigation, provided disposed in proper way.

MAIN ELEMENTS OF BRAZIL'S ETHANOL POLICY

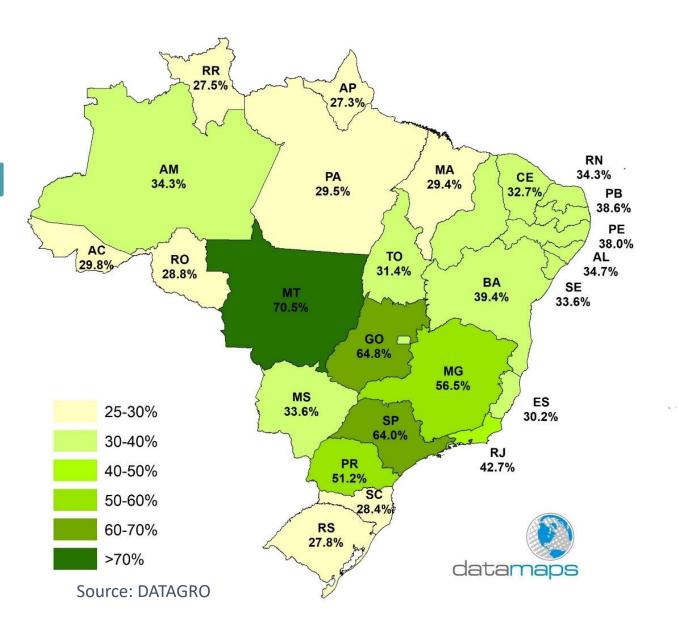
- **RenovaBio:** new legislation that places innovation and efficiency in fuel production and use is at center of Brazil's strategy for the use of low carbon sources of energy.
- RenovaBio is not subsidy, nor carbon tax
- System of voluntary certification of biofuel producers for their energyenvironmental efficiency, based on life-cycle assessment (LCA), which will determine ability to request issuance of Decarbonization Credits (CBios)
- Market-driven carbon pricing mechanism (endogenous, not exogenous determination), rewarding achievement of individual efficiency, not a common or equal coverage.
- Unleashes market forces to implement and drive innovation for increased competitiveness in biofuel/bioenergy production.



HOW IT ALL HAPPENED

- Blend mandate was raised overtime, as production allowed.
- Obligatory contracts for sale of ethanol to be blended in gasoline between producers and oil company(ies)
 - Contracts are valid for 12 months, and must be renewed every year to meet projected demand of ethanol to be blended in order to guarantee supplies & meet mandate
 - Contracts can be used as colateral to finance expansion of distillation capacity (PPA's)
- Until 1999, price of ethanol at producer level was determined by govt in **parity with sugar.** After market scale was achieved, prices were liberalized
- Since 1999, prices of gasoline and ethanol at producer level are freely determined. Prices at retail are also freely determined
- Consumers make the choice of fuel use at the pump
- Regulation on fuel specification confers legal security to automobile & autopart manufacturers and fuel
 distributors
- Provinces are free to set state-level incentives for ethanol production & use of ethanol as fuel,
 recognizing its positive externalities

EVOLUTION OF PRODUCTION OF SUGAR & ETHANOL IN BRAZIL


- Diversification towards ethanol enabled production of sugar & ethanol to rise from 7.1 mmt of Total Reducing Sugars (TRS) in 1975/76, to 89.1 mmt in 2019/20.
- % of TRS going to ethanol rose from 13.2% in 1975/76 to 65.2% in 2019/20.
- Industrial flexibility allowed industry to adapt more efficiently to changing market conditions.
- Sugar exports of 19.3 mmt in 2019/20 account for only 22.6% of TRS supply.

Source: DATAGRO

SHARE OF ETHANOL IN OTTO CYCLE FUEL CONSUMPTION

BY STATE IN BRAZIL (as % of gasoline equivalent)
IN 2019

ADVANTAGES OF ETHANOL FOR ENERGY POLICY

- **Drop-in** solution for mid-level blends: does not require built-up of new fleet or infrastructure
- Enables immediate implementation & results
- Replicable: no technical barrier for implementation
- **Scalable:** can grow overtime using available feedstocks, including organic residues for cellulosic conversion into ethanol
- Very effective and proven environment & health benefits
- Accessible in price to consumers
- Promotes jobs & local income to farmers
- Ethanol's high octane **complements gasoline** well & enables use of lower cost blend feedstocks
- Promotes sustainability & longevity to use of traditional sources of energy
- Enables automakers to meet the most restrictive emission targets

BASIC FOR ADOPTION OF ETHANOL USE REGULATION

- Vision that it is possible to enlarge the use of high-density low-carbon liquid fuels, stimulating higher energy efficiency and lower environmental footprint
- Using largely available biomass feedstocks without compromising food security
- Complementing in a virtuous way renewable and traditional fuels
- Using the existing infrastructure, and
- Promoting local technologies in fuel production and in automobile technology
- Promoting social, economic, environmental & health benefits.

BILATERAL TECHNICAL COOPERATION ON ETHANOL

- Building upon Cooperation Agreements signed by President Jair Bolsonaro & PM Narendra Modi, on occasion of the State Visit during India's Republic Day, on January 26, 2020,
- Brazil is ready to exchange its experience with Indian public and private authorities to foster implementation of ethanol use from indigenous sources
- Aiming at the achievement of their respective National commitments and the promotion of improvements at local and global scale.

REALIZATION:

PROMOTION:

