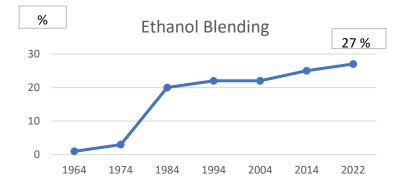
Sustainable Mobility Ethanol Talks Vietnam

Edson Orikassa



1 - Ethanol history in Brazil:

1.1 Timeline:

Remark: Blending started in 1924 and became mandatory in middle of decade of '70

1.2 Decade of 1970 :

- More than 50 years ago the blending raised from 10% to 15%
- It happen along the country, even an old vehicle fleet available before this period
- Octane was improved in 2 or 3 points
- Some improvements was done into vehicles too

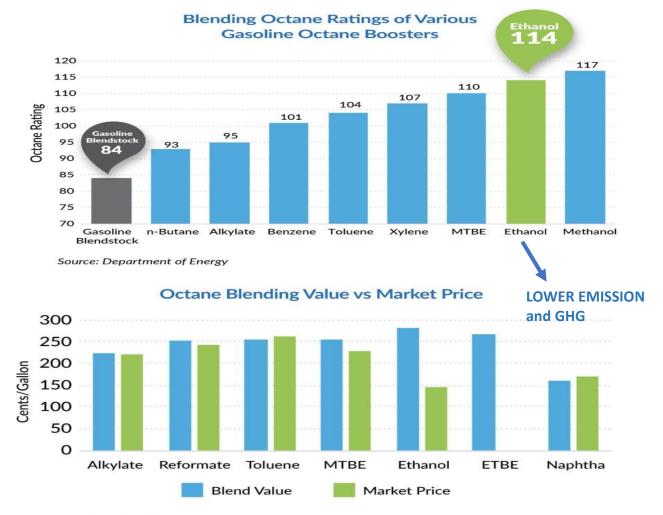
1 - Ethanol history in Brazil:

1.3 From decade of '80:

- The blending raise to 20%
- No vehicle problem was detected

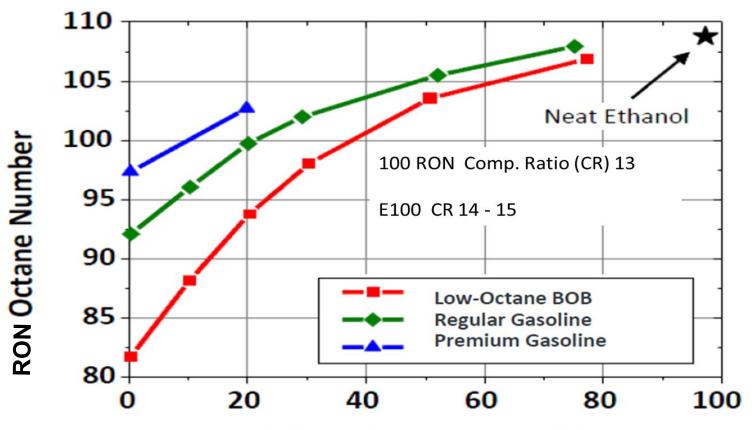
1.4 From years 2000 up to now:

- In the beginning raise to 25% and nowadays is 27%
- Tests were done with 27%, but no problem was detected
- There is some movements in raise it to 30%
- Some studies were already done with 30%, but we shouldn't have problem



2. High Octane Fuel (HOF) - RON

Higher octane allows for higher compression ratios, which increases efficiency and can reduce engine size and speed


There are octane boosters. The most common ways are to increase aromatics or increase the volume of ethanol

Source: Argus Media

2. High Octane Fuel (HOF) - RON

Ethanol Content (vol.)

Reproduced from Stein, SAE2012-01-1277

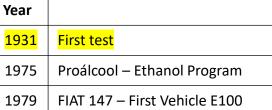
BOB - blendstock for oxygenate blending

3 - Vehicle's history:

3.1 Brazil:

<mark>(1931)</mark>

3.2 World (E85):


E85 FlexFuel Chevrolet Impala LT

E85 Flexfuel van Ford E-250 57

- VW Gol First FFV 2003
- Corolla First HEV-FFV 2019

<mark>(2019)</mark>

Volswagen Kombi TotalFlex

5

E85 Saab 9-3 SportComi BioPower, Suécia

4 – Fuel specification:

4.1 Brazil:

1		UNIDADE	LIMITE		MÉTODO							
	CARACTERÍSTICA		EAC	EAC EHC I		NBR	BR AS		М			
	Aspecto	1	Límpido e Isento de Impurezas (LII)		Visual							
[Cor		(2) (3)		Visual							
	Acidez total, n máx.(em miligramas de ácido acético)		30		9866		-					
	Condutividade elétrica, máx.	µS/m	350		10547		- 1					
	Massa específica a 20ºC (4) (5) (6)	kg/m3	791,5máx. 807,6 a 811.0		5992 e 15639 D		D405	52				
	Teor alcoólico (5) (6) (7) (8)	% volume	99,6 min.		96,1 a 96,0	5990	2 e 15639	-				
		% massa	99,3 min. 92,5 a 93,8									
4	Potencial hidrogeniônico (pH)	-	-		6,0 a 8,0		10891	-			Γ	
	Teor de <mark>etanol</mark> , min. (9)	% volume	98,0		94,5		1	D550	95501			
	Teor de água, máx. (9) (10)	% volume	0,4		4,9	155	E203		3			
	Teor de metanol, máx. (11)	% volume	1 5 5 3		cromatografia							
	Residuo por evaporação, máx. (12) (13)	mg/100 mL			8644		-					
	Goma Lavada (12) (13)	mg/100 mL			-		D38	1				
	Teor de hidrocarbonetos, máx. (12)	% volume			13993		-					
	Teor de cloreto, máx. (12) (14)	mg/kg	1					D73 D73				
	Teor de sulfato, máx. (14) (15)	mg/kg	4					D73 D73				
	Teor de ferro, máx. (14) (15)			5	11331		-					
	Teor de sódio, máx. (14) (15)	mg/kg	2		10422		-					
[Teor de cobre, máx. (15) (16)	mgikg	0,07		-		11331	-				
Teor (7) (8	alcoólico (5) (6) })	% volu	olume		99,6 mín	. 95,1 a 96,0		1	5992 e 15639		9	
		% massa		99,3 mín.		. 92,5 a 93,8		۱				

4.2 WWFC World Wide Fuel Charter allows E10:

CATEGORY I UNLEADED GASOLINE

Markets with no or first level requirements for emission controls; based primarily on fundamental vehicle/ engine performance and protection of emission control system.

PROPERTIES		UNITS		LIMIT			
			Nin.	Max.			
'91 RON' (!)	Research Octane Number		91.0				
	Motor Octane Number		82.0				
'95 RON' (1)	Research Octane Number		95.0				
	Motor Octane Number		85.0				
'98 RON' (1)	Research Octane Number		98.0				
	Motor Octane Number		88.0				
Oxidation stability		minutes	360				
Sulphur		mg/kg ⁽²⁾		1000			
Trace metal (9)		mg/kg		I or non-detectable, whichever is lower			
Oxygen (4)		% m/m		2.7 (9)			
Aromatics		% v/v		50.0			
Benzene		% w/v		5.0			
Volatility				See Tables, page 8			
Unwashed gums		mg/100 ml		70			
Washed gums		mg/100 ml		5			
Density		kg/m3	715	780			
Copper corrosion		rating		Cans 1			
Appearance			Clear and bright	Clear and bright; no free water or particulates			
Carburettor cleanliness		merit	8.0 (4)				
Fuel injector cleanliness, Method 1, or		% flow loss		10 (4)			
Fuel injector cleanliness, Method 2		% flow loss		10 (8)			
Intake valve deanliness		merit	9,0 (4)				

ACEA - European Automobile Manufacturers' Associatio

Japan Automobile Manufacturers Association (JAMA)

- (2) The unit mg/kg is often expressed as ppm. Lower subplur content preferred for catalyst-equipped whicles.
 (3) Examples of trace metals include, but are not limited to, Ku, Fe, Mu, Ru, P, Pu, Si and Zu. Another undesirable element is CL. Metal-containing additives are acceptable only for value stat protections in non-catalyst cars; in this case, potassium-based additives are recommended. No intentional addition of metal-based additives in allowed.
- Where oxygenates are used, ethers are preferred. Nethanol is not permitted.

Footnotes:

- (F) By exception, up to 10% by volume ethanol content is allowed if permitted by existing regulation. Blendstack ethanol should meet the E100 Guidelines published by the WWC Committee. For Journ Jabelling is recommended for gazoline-ethanol blends to enable customers to determine if their which cr. use the final.
- (4) Compliance with this requirement can be demonstrated by the use of proper detergent additives in comparable-base gasolines.

(1) Three octane grades are defined for maximum market flexibility; availability of all three is not needed.

⁽⁵⁾ By exception, up to 10% by volume ethanol content is allowed if permitted by existing regulation. Blendstock ethanol should meet the E100 Guidelines published by the WWFC Committee. Fuel pump labelling is recommended for gasoline-ethanol blends to enable customers to determine if their vehicles can use the fuel.

5 - Conclusions:

5.1 Brazil:

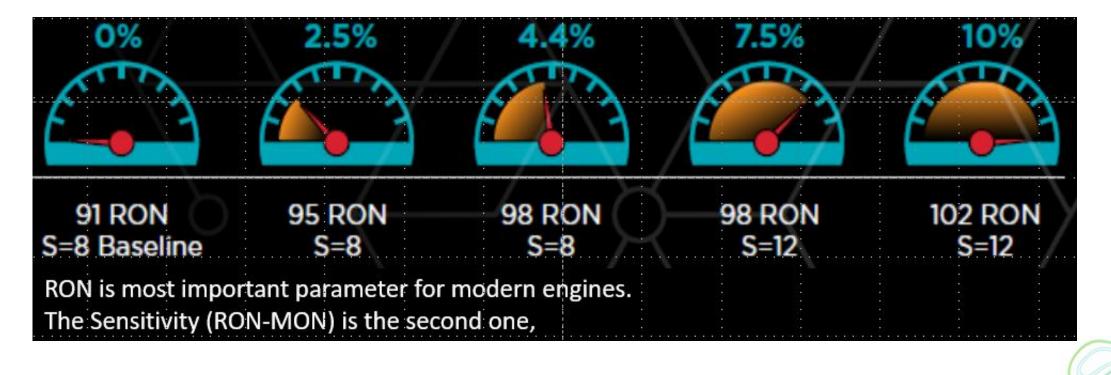
- Huge and positive economic & social impact
- In job creation
- Technological development
- Environment improvement
- Excellent option for the electrification process in transport

5.2 World:

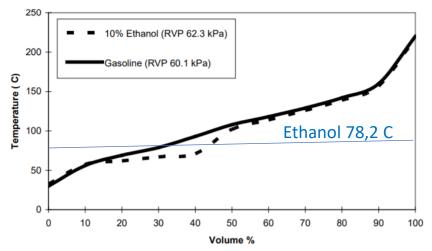
- Environmental debate
- Sustainable Fuel
- Finite fossil fuel
- Job generation

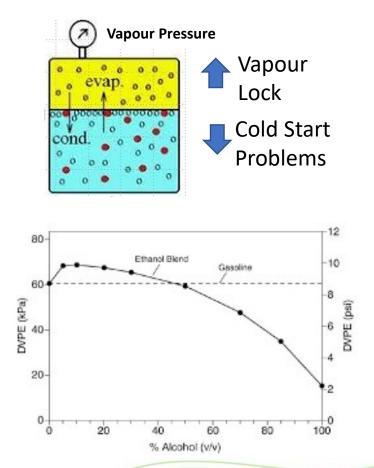
Cảm ơn rất nhiều Thank you very much

Edson Orikassa eorikassa@gmail.com


Backup:

Effects of improving Octane properties RON and Sensitivity

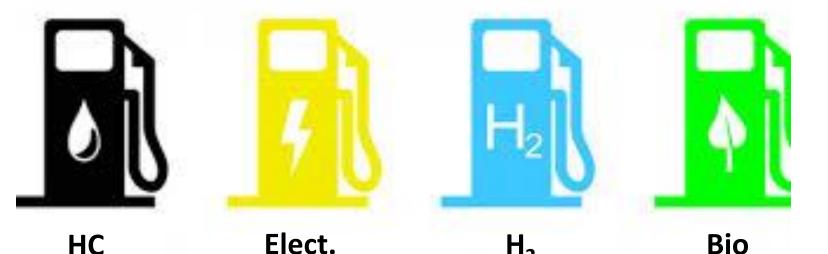

MON-Motoring Octane Number was the original method to indicate knocking resistance. For downsized, down speed (rpm) and high compression ratios engines RON-Research Octane Number is more indicated


Differences between Gasoline and Ethanol Properties

Destillation

Up to 10% by volume no notable effect on adjustment. Above it the injection and combustion sensors must learn the new % and adjust to it. Current systems are able to control up to E25

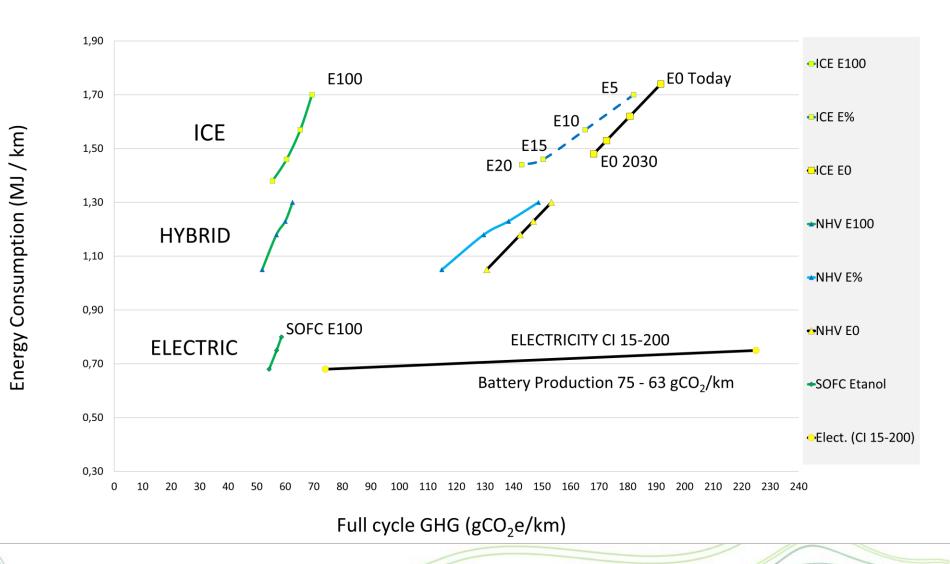
Vapour Pressure



• Energy Content

Ethanol has around 70% of gasoline energy content by volume Ethanol blends will have lower energy than E0. It could cause with E10 around 3% lower range, but it con be offset by the higher RON, even on existing vehicles.

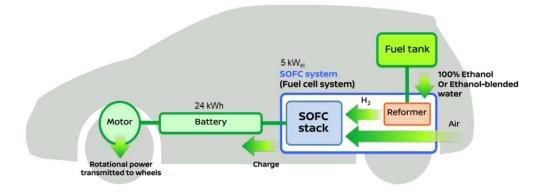
All combinations will be needed for low Carb Society



Ethanol allows a quick and sustainable transition

HCElect.H2BioHC + Bio: extends fossil fuel usefull life with lower GHGHC + Elect.: with small battery reduces GHG by lowering HC consumptionElect.+H2: Fuel Cell improves Electric cars GHG by reducing battery sizeElect.+H2 + Bio: Ethanol Fuel Cell, renewable, efficient and low GHG

Vehicle Full Cycle GHG= Well-to-Wheel GHG + (Vehicle + Battery Production) GHG (gCO₂e/km)


SUSTAINABLE

Flex Hybrid - Electrification is not "Batteryzation"

Ethanol is "liquid Hydrogen" when used in a Fuel Cell, eliminating the high cost 700 bar reservoirs and it is renewable!

HOF Global Fuel

Sustainable Energy Efficiency - Consider GHG WTW - Promote ethanol as Octane

improver

- Adoption of Exx (5-20%) high octane fuel (HOF)
- Global specs. for Exx HOF regular 95 RON and Premium 98 RON

Exx HOF benefits for the new and current vehicles

- Count Exx as an immediate and effective CO₂ reduction action (Bioplatform)
- Develop Exx hybrids low GHG small batteries

Ethanol as bridge for

Bioelectrification

- Ethanol FC
 combined w/ clean
 electric energy
 generation
- Ethanol in future hybrid solutions complementing bio electrification for Heavy Duty Vehicles